Adsorption Principles and Structure Characteristics of Porous Materials

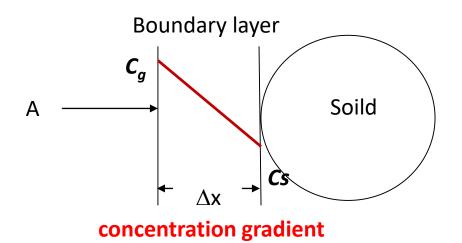
(<u>www.che.ncku.edu.tw/FacultyWeb/TengH</u>) porous materials

Syllabus

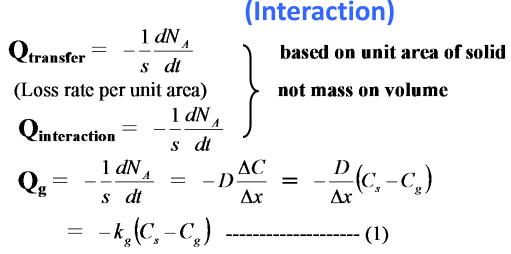
- 1. Heterogeneous Reacting System nonporous particles
- 2. Heterogeneous Reacting System porous particles *"Chemical Reaction Engineering"* Levenspiel, 2nd ed.
- Physical Adsorption at the Gas-Solid Interface Theory *"Principles of Colloid and Surface Chemistry"* Hiemenz, 2nd ed
- 4. Powder Surface Area and Porosity Technique

"Powder Surface Area and Porosity" Lowell and Shields, 3rd ed.

5. Crystal Structure


"Basic Solid State Chemistry" West, 2nd ed.

Hsisheng Teng, Professor


Department of Chemical Engineering National Cheng Kung University Tainan 70101, TAIWAN hteng@mail.ncku.edu.tw +886-6-2385371

Chapter 1

Heterogeneous Interacting System – Nonporous

Reaction rate depends on mass transfer and chemical reaction on surface

where D is the diffusion coefficient and k_g is the mass transfer coefficient.

$$\frac{k_g d_p}{D} = 2 + 0.6Sc^{\frac{1}{3}} \operatorname{Re}^{\frac{1}{2}} = 2 + 0.6 \left(\frac{\mu}{\rho D}\right)^{\frac{1}{3}} \left(\frac{\rho u d_p}{\mu}\right)^{\frac{1}{2}}$$

Chemical reaction $\mathbf{Q}_{\mathbf{s}} = -\frac{1}{s} \frac{dN_A}{dt} = k_s C_s$ ----- (2)

At steady state : $\mathbf{Q}_{g} = \mathbf{Q}_{s}$ $k_{g}(C_{g}-C_{s}) = k_{s} C_{s}$ $\underbrace{C_{s}}_{k_{g}+k_{s}} C_{g}$ (conc. at the surface) Substitute into (1) or (2)

$$-\mathbf{r}_{\mathbf{A}} = \mathbf{Q}_{\mathbf{g}} = \mathbf{Q}_{\mathbf{s}} = -\frac{1}{s} \frac{dN_{A}}{dt} = \frac{1}{\frac{1}{k_{g}} + \frac{1}{k_{s}}} C_{g} = k_{app.} C_{g}$$

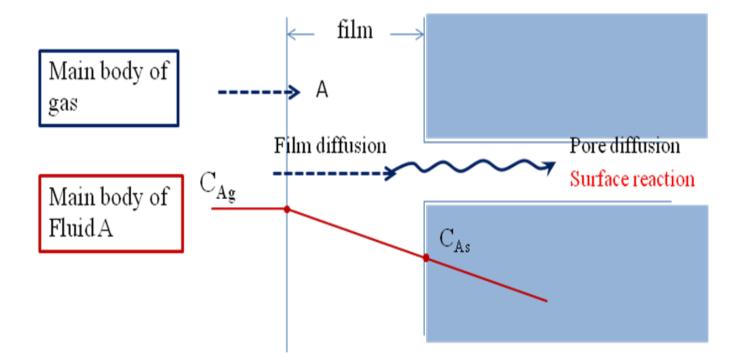
 k_g depends on: 1.relative velocity 2.particle size 3.fluid properties

k_s depends on:
1. surface structure
2. No. of active sites

If $k_g >> k_s$ (transfer is fast)

$$-r_A = k_s C_g$$

If $k_s >> k_g$ (mass transfer slow)

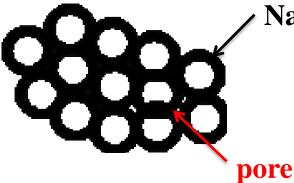

$$-\mathbf{r}_{A} = \mathbf{k}_{g} \mathbf{C}_{g}$$
$$\therefore -\mathbf{r}_{A} = \frac{k_{s} C_{g}}{1 + \frac{k_{s}}{k_{g}}}$$

where: is function of particle properties, defined as

Damkohler number (= $Da = \frac{\text{chemical reaction rate}}{\text{Interface duffusion rate}}$)

Chap. 2

Heterogeneous Interacting System – Porous Particles



Surface area = internal + external However internal SA >> external SA

Reactions for a heterogeneous system

- 1. Gas film resistance
- 2. Pore diffusion resistance
- 3. Surface phenomenon resistance (<u>Adsorption</u>, surface reaction, deposition)

Active site theory

Nanoparticle

Nanoparticle aggregates = porous material

All these pore structures have to be measured by the physical adsorption technique.